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Fingerprint for a mineralising system

The nonlinear toolbox: What do we do
with all these data?

« Wavelets and multifractals. Long
range correlations.

e Recurrence.

* Probability distributions



so what do we do with all these data?



Classical statistics
Assumption - statistics are Gaussian
— Mean and variance have a statistical meaning

Assumption - variables involved are “random” and
“independent”

- that no correlations exist within the data

However -
Most data sets 'fractal’ in nature
Long range correlations exist

Concepts of mean and variance statistically
meaningless



Gauss; bell curve *""*}i\ Pareto; inverse power law
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. . Pareto; inverse power law
Some important words of caution (circa 1900)
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The term fractal as used in geology can mean two things:
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1. The data follow a power law which means if we plot the
log of the data against the log of the size we get a straight line.

1.3 1

Lo;garithmic vériable
2. The data look the same at all scales; ie the data are scale invariant.

In fact straight line plots are extremely rare and people dream up all sorts of reasons why
they are not straight lines.

The reason data look the same at all scales is because the data follow the same probability
distribution at all scales. It is the probability distribution that is scale invariant, not the data.
This results from the same processes operating at all scales.

Most geological data have probability distributions that have long or fat tails which are
power law like.



We use the term fractal to mean the degree to which an
object fills space.

Fractal Multi Fractal

: Each component fills space to
Fills about 2.6 of 3D space a different degree



If we go Gaussian, we miss all
the tails

which is a pity because that's
where all the good stuff is.



If ore grade is fractal or fractal-like
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Thank you Julian Vearncombe



Another measure that we would
really want when we come to
prediction is some measure of

periodicity.

Most engineers look immediately to
the Fourier transform (FT)
(which is easily executed in Excel)



Let us look at the Fourier transform of
some quasi-periodic sighals and a
deterministic chaotic signal.

A quasi periodic signal is one that looks
to be periodic but never repeats itself.

An example is

y = Asin(ax) + Bsin(bx)
where the ratio a/b is an

irrational number such as =,
1/6 or sqrt(2).



Quasi
periodic
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y=sin(x)+sin(x/2)+sin(x/4)+sin(x/6)+sin(x/8)+sin(x/10) Fourier transform
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y =sin(x) +sin(~v/2x) +sin(+/5x) +sin(v/15x)

The Fourier transform is of great use for deterministic,
periodic or quasi-periodic signals

Fourier transform

Logistic

(e)

The Fourier transform is of little use for ®

deterministic, chaotic signals Fourier transform



Multifractals; an intertwined set of fractals
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In order to establish if a geometry is multifractal and
to quantify the geometry we use a wavelet transform
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There are all sorts of wavelets, each useful for different
patterns.
All of them are localised wave packets of some kind.




WAVELET ANALYSIS OF FRACTAL SIGNALS

% “Mother wavelet”
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Scan the wavelet across the image with different magnifications and see
how closely the wavelet matches the image at a particular scale.

A mathematical microscope.

A generalised box counting procedure.



Initial signal

Signal strength

Wavelet transform: Scalogram
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Multifractal time series e e
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Note the fluctuations in the multifractal time series which
are not present within the monofractal time series or the
white noise. It is the structure of such fluctuations that

Ihlen 2012 we aim to quantify.
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A Multifractal series B Multifractal spectrum
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Note how the width of the spectrum
increases as the fluctuations increase

lhlen 2012



INITIAL DATA Wavelet transform

Chlorite data
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The Data

Mineralogy / Chemistry

Sericite composition

Colour stretch: 2190-2000nm
(Blue-red)

Near infra-red reflectance spectra of many kms of diamond drill core
-> detailed mineralogy + chemistry at mm / micron resolution

The colour - chemical composition of white micas from K-rich to Fe-
rich
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Spectrum range

Remember how the width of the spectrum
increases as the fluctuations increase
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Wavelet-based analysis of routinely
acquired hyperspectral reflectance
signals is demonstrated to be effective
for quantifying the dynamical
organization of down-hole primary
mineralization, host rock alteration,
and vein and breccia infill mineralogy.

Munro et al. 2017 Geol. Soc. Lond. Spec. Pub.



INITIAL DATA Wavelet transform

Chlorite data
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Wavelet scale
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Hurst exponent for all data 0.85
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A classification of ore bodies on the basis of width of the
singularity spectrum and whether long range correlations appear
at small or large spatial scales relative to the scale of day to
day mining operations.



Hydrothermal mineralising systems are nonlinear
dynamical systems and need to be studied using
the tools of nonlinear dynamics

This involves looking for long range order in
the system and whether the overall patterns
of mineralisation and alteration are
multifractal

A fractal system.
The elements of the
system do not fill
space
A multifractal system. CEE
A set of intertwined [
fractals each of which (S,
fill space to varying "
degrees.




