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The nonlinear toolbox: What do we do 

with all these data?

• Wavelets and multifractals. Long 

range correlations.

• Recurrence.

• Probability distributions



Probability distributions.



The interactions in mineralising systems are nonlinear (each has an

influence on others) and hence the probability distributions that

develop are a reflection of these interactions. As Savageau (1979,

1980) showed:

Any nonlinear system that grows to maturity has a growth curve 

that is a legitimate cumulative probability distribution.

Probability distributions are the third important tool that 
have a direct link 

to the processes that operated in a mineralising system. 



What are the growth laws associated with mineralising 

systems?
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Reaction kinetics

,

The larger the Arrhenius number, 

the more explosive and spatially 

localised the reaction is.
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5 diopside + anorthite + 4 H2O + 6 CO2 → chlorite + 9 quartz + 6 calcite; DH = -783.36 kJ,

3 K–feldspar +2 H+ → muscovite + 6 quartz +2K+;   DH = -485.23 kJ,

6 actinolite +12 CO2 + 14 H2O → 5 chlorite + 12 calcite + 28 quartz; DH = +13,409.93 kJ,

→- + -

2Au(HS) Au +2HS →+ +

2 (solid)Au +0.5H Au +H

1.

2.

3.

4.

For Tmax = 773K Ar is 1: 122
2: 75.5
3: 4173
4: 56

Subcritical crack growth:
Ar = 3 - 15

Deposition of quartz is 
endothermic

5.

5: 11

→4 4 2(solid) 2H SiO SiO + 2H O
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The precise shape of the cumulative distribution curve (and hence 

the endowment of the system) depends on the relative positions of A, 

B, C and D
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Leads to some form of sigmoidal growth curve
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Weibull

Fréchet

Gumbel

Thus, systems that nucleate slowly, grow fast and die rapidly are likely to 

follow a Weibull distribution.

Systems that have a maximum growth rate exactly at 1/e are probably rare 

but correspond to Gumbel distributions.

Systems that nucleate rapidly and have variable growth rates but long 

lifetimes are likely to follow Fréchet distributions

Equivalent to a long, fat tail

Dot is maximum growth rate



Thus we expect the cumulative probability 
distributions for mineral abundance and endowment 

to be some form of sigmoidal distribution.

This is true at all scales from regional to hand 
specimen scales.

If a mineral system follows a common growth law 
throughout it will be characterised by a common 
cumulative probability distribution throughout. 

Variations in the growth law at all scales are 
reflected in variations in the cumulative probability 

distribution at the various scales.



Ore body scale
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Regional scale
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& indeed we observe the cumulative probability 
distributions for mineral abundance and endowment 

to be some form of sigmoidal distribution.

This is true at all scales from regional to hand 
specimen scales.

How further may we analyse the data?



Entropy says something about the quality of energy.

The first law of thermodynamics tells us that the 
amount of energy in the universe can never be depleted 
and nor will it grow.

For example, the energy stored in a log of wood is not 
lost when you ignite it. It just transfers into heat.

Consider entropy.



Just as two libraries contain the same number of books, they may 
differ in quality. In one library, all books are neatly arranged 

alphabetically on the bookshelves. In another we have a random-
stacked pile. Although our two libraries contain the same number of 

books, they differ in the quality of service they can provide.

Consider entropy as a measure of quality of energy –
the lower the entropy the higher the quality.

the efficient library 
lower entropy. 

the random-pile library
higher entropy.

Energy stored in a carefully ordered way (the efficient library) has 
lower entropy. Energy stored in a chaotic way (the random-pile 

library) has high entropy.



𝑯 𝑿 = −න
−∞

∞

𝒑 𝒙 𝐥𝐨𝐠[𝒑 𝒙 ]𝒅𝒙

If X is a continuous random variable with probability 
density p(x) 

then the differential entropy of X is defined as

The link between 
probability and entropy.



Entropy calculations for probability distributions

Gamma

sh shape parameter   sc scale parameter

Entropy = sh+Log[sc]+Log[Gamma[sh]]+(1-sh)*(Log[sh]-1/(2*sh))

LogNormal

mu mean   stdev standard deviation   of the normal distribution from which the 
lognormal distribution is derived

Entropy = Log[stdev*Exp[mu+0.5]*Sqrt[2*Pi]]

Frechet

alpha shape sc scale EulerGamma Eulers constant   

Entropy=1+EulerGamma/alpha+EulerGamma+Log[sc/alpha]



The entropy tells us something about the shape 
of the distribution function. 

Given two probability distributions defined over 
the same range, the broader, flatter distribution 

will have the larger entropy, a fact that
is consistent with defining probability as a model 

for uncertainty.

We should be much less certain about the 
outcome of measurement modeled by a broad, 

flat distribution than we are about one governed 
by a distribution having a single sharp peak.



Two approaches to entropy

1. As a measure of uncertainty

2. As a measure of information

Michalowicz et al. 2014   Handbook of Differential Entropy

‘in our practical experience, we have found the 
interpretation of entropy as uncertainty to be much 
more useful and much less prone to misunderstanding.

The larger the uncertainty about X, the larger the 
entropy associated with the probability distribution 
pX (x) of X.


