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Spatial distribution of
orogenic gold deposits

The question we want to answer is:
How can we tell if there is
a hidden deposit?
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If the network is a nonlinear system we expect every node in the network to be
correlated with every other node.

The issue is: What is the form of this correlation?
If | add a new node, does it change the form of this correlation?

The correlation is measured by n-point correlation functions and
network metrics

The questions to be explored are:
Does the probability distribution for the network change if | add a new node?
Do the metrics of the network change if | add a new node?

Are there hidden nodes?
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So called “fractal” distributions Zimbabwe. Obtained by box counting.
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In fact, the box counting procedure is a way of conducting a nearest neighbour distribution

Journal of Structural Geology 156 (2022) 104529

Contents lists available at ScienceDirect oomas o
STRUCTURAL
‘ GEOLOGY
P o };J Journal of Structural Geology S
’ ¢ “lv K NZ >\‘~ ‘
o - "4,\ 4 L Blaes z h) g £
ELSEVIER journal homepage: www.elsevier.com/locate/jsg B s SN
Check for
updates

The spatial distributions of mineralisation

Bruce E. Hobbs ™", Alison Ord ™, Thomas Blenkinsop

This is always a Weibull distribution independently of the underlying spatial distribution
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The issue is that since a box count always produces a Weibull distribution,
We have no understanding of what kind of distribution defines
the regional distribution of mineralisation anywhere.
We need to turn to other methods of defining regional distributions.

Network science offers a way forward.



Kalgoorlie sub-network. Ore bodies
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This is a scale free network Kalgoorlie



Networks

Networks associated with complex systems presumably display some form of
organisational principles
which should at some level be encoded in in the network topology.

One of the most important characteristics of
complex networks is their internal structure,

l.e., how the components and connections
between components are arranged or organized.

The reason for this is that the structure of
complex networks has a significant influence on
their function and performance.




A scale-free network is a network whose deqgree distribution follows
a power law, at least asymptotically. That is, the fraction P(k) of nodes in

the network having k connections to other nodes goes for large values
of k as

P(k)~k”

where y is a parameter whose value is typically in therange 2 <y <3,
although occasionally it may lie outside these bounds.

Scale free

Random

(b) Scale-free network

(a) Random network
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Scale free network By
Martin Grandjean -
Grandjean, Martin
(2014). "La
connaissance est un
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Examples of
A) Betweenness

centrality,
B) Closeness

centrality,

C) Eigenvector
centrality,

D) Degree
centrality,

E) Harmonic
centrality and

F) Katz centrality of
the same graph.
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An undirected graph colored based on the eigenvalue An undirected graph colored based on the betweenness
centrality of each vertex from least (red) to greatest (blue). centrality of each vertex from least (red) to greatest (blue).
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FIG. 4 Example of how the addition of a link perturbs the
centrality. In black, the betweenness centrality for the 1d
lattice (of size (N = 100) has a maximum at the barycenter
N/2 = 50. The addition of a link between a = 20 and b =
30 decreases the betweenness centrality between a and b and
increases the betweenness centrality of nodes a and b.
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Gibbs Point Processes

process pair potential ¢(r) characteristic
HardcorePointProcess hardcore interaction
StraussPointProcess constant strength softcore interaction

StraussHardcorePointProcess inner hardcore with an outer softcore

PenttinenPointProcess interaction based on overlapping area
DiggleGrattonPointProcess inner hardcore with decreasing softcore

DiggleGatesPointProcess smooth transition from point hardcore

gig@s



The questions are:

« What are the metrics of the network formed by the mineralised sites?
« Is the point distribution a Gibbs process? If not what iIs it?

* Is there evidence of a depleted region around big deposits?

 What happens to the metrics of the network and of the point distribution
If | remove a deposit?

 What happens to the metrics of the network and of the point distribution
If l insert adeposit?

* Is there any evidence of a hidden node?

 Does the Zimbabwe network differ topologically from the Yilgarn network?



Communication processes between mineralising sites Adjacency Matrix

Each chemical

reactors has Iits

own operating
signal

A regional array
of chemical
reactors each
representing an

bod
Do they talk to each other? ore oty

Over what length scale? Do they synchronise?




MINERALISING SYSTEM

Mid crust just
below
percolation
threshold

Fluctuations in fluid ‘
pressure at the
collapsing carapace
are transmitted
throughout the
system

Lower crust just
below percolation
threshold

Fluids from
collapsing
carapace in
crystallising
plutons low in
crust

From Blenkinsop (2014)
and Burnham (1979)



MINERALISING SYSTEM

Mid crust just
below
percolation
threshold

Fluctuations in
fluid pressure at
the devolatilising

front are
transmitted
throughout the

system

Lower crust just
below percolation
threshold

L EEns

Fluids from rising
devolatilisation
iIsotherm in
mantle

From Blenkinsop (2014)



Distances over which plumbing systems can communicate

Length scale, L, over which a pressure change is felt for a given time scale,
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Input gold An example
concentration 10 ppb

by weight of fluid : :
) Exothermic deformation

300°C on far field boundary

v

10 km >

22222

22222,

Imposed flow rate for Reactions within reactive
lithostatic fluid region endothermic with
pressure gradient fluid release

2 clinozoisite + 3 pyrite + 2 calcite + 3 quartz +5 H,0 + 1.5 H, - 3 epidote + 2 CO, + 6 H,S
This reaction is endothermic with AH = 5937.5 kl.



Synchronisation of pore pressure in mineralising system
over 10 km

Fluid pressure
x108 Pa

Time x 104 years




Focussing of fluid flow into high permeability lens
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Focussing increases as permeability ratio increases
and as aspect ratio, A, increases
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Focussing patterns indicate a region of stagnant flow
next to areas of maximum focussing.

Stagnation regions are adjacent to areas of maximum permeability contrast
and maximum
Interface between permeabilities.

This suggests that the spatial distribution should be some form
of Gibbs point process.

We run some models below to see the influence of heterogeneity
In permeability upon flow patterns.

If the flow Is greater than some critical value reactions occur
to increase the permeability



Initial permeability distribution Early stream lines
Pink: 101 m?; red: 1018 m? Black outlines permeablllty has

Late distrlbutlon of fluid velocity
Blue is highest
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Initial permeability distribution
Pink: 10-®* m?; red: 1018 m?

Late distribution of fluid velocity
Dark blue is highest

Early stream Ilnes
Black outlines permeability has
mcreased to 10-17 m2
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Detail of stream lines and fluid velocity: green is highest



Fractal dimension
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Yilgarn distribution of
mineralised sites on gradients
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DETECTION OF
HIDDEN NODES IN A

Mid crust just

below
MINERALISING percolation
SYSTEM threshold

How could we

tell if one of the
red zones was

covered?

Lower crust just
below percolation
threshold

e

Fluids from rising
devolatilisation
iIsotherm in
mantle

From Blenkinsop (2014)



Would adding or removing a part of the image significantly change the adjacency matrix?

Image Image with overlay of Adjacency matrix Eigenvectors
random points and eigenvalues



THE HIDDEN NODE PROBLEM

Consider a network whose topology is completely unknown but
whose nodes consist of two types: one accessible and another
Inaccessible from the outside world.

The accessible nodes can be observed or monitored, and we
assume that a data set Is available from each node in this

group.

The inaccessible nodes are shielded from the outside and they
are essentially “hidden.”

The question is: can we infer, based solely on the available data
set from the accessible nodes, the existence and locations of
the hidden nodes?



White mica signal from
each hole
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Figure 1. A schematic illustration of a complex gecspatial network. The connection topology, the positions of the nodes in the physical
space and nodal dymamical equations are unknown @ prion, but anly time serles from the nodes can be collected at a smgle node in the
network (e.g. a data-collecting centre). The challemsges are to reconstnuct the dymamical network, to lacate the predse position of each
node and to detect hidden nodes, 2l based solely on time senies with inhemogeneous time delzys, The green drcles denote ‘normal’
nodes and the dark drcles indicate hidden nodes,

After Su et al., R. Soc. Open Science. 3, 150577
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Hidden ore body #20

Calculated adjacency matrix
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Detection of position of hidden ore body by triangulation

Calculated adjacency matrix

Variance in coefficients

Calculated network
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This presentation has illustrated some aspects of

mineralising systems that arise because they are

composed of:

 Open flow chemical reactors that may be coupled over
many 10’s of kilometres

« With coupled mineral reactions some exothermic,
some endothermic.

« Deformation (including vein formation and brecciation)
IS also exothermic.

* Fluid pressure and chemical reaction rates depend on
temperature.

« Exothermic and endothermic processes compete.

Such behaviour is typical of nonlinear dynamical
systems



There is much to learn from the regional distribution of
mineralisation.

The subject is barely touched.

Much could be learnt by treating the distribution of mineralisation
as a network.

However a considerable amount of data are required for the
hidden node problem.

Not only is a lack of data a problem, cooperation between many
companies is required.

Hidden node exploration is probably only applicable at present if
one wants to explore close to existing mineralisation.
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